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ABSTRACT 

Natural gas is a homogenous liquid of low viscosity and low density or it 

may also be defined as a complex mixture of combustible hydrocarbon 

gases and impurities such as carbon dioxide, vapour, sulfur, hydrogen, 

and nitrogen. In order to fulfill the pipeline and environmental standards, 

these impurities must be removed. The major cause of climate change is 

carbon and sulphur emissions such as CO2 and H2S. For these impurities, 

the pipeline requirements are: <2% CO2, <4ppm H2S and <0.1g/m
3 

H2O. 

Based on disadvantages in conventional processes, such as high energy 

consumption, complex processing and high capital cost, the development 

of membrane separation technique is highly compact, energetic, 

environmentally friendly, flexible, and possibly cost-effective than 

already well-established technologies. This study recommends the 

separation of CO2 from CH4 through membrane technology and 

introduces the cellulose acetate (CA) membrane in comparison with 

other established separation techniques including as absorption, 

adsorption, and cryogenic techniques and also suggests some ideas about 

current signs of progress in CA membranes such as enhanced 

permeability and selectivity. This study also emphasizes the modification 

of the cellulose acetate membrane and also outlines the essential 

distinctions, characteristics, and conditions of operation for the 

membrane process and other CO2 removal approaches. 
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and making it corrosive owing to its acidity, reducing the calorific value of gas streams, and causing the 

problem in gas storage and transport issues (Solomon S.Q.D et al., 2012). (C. A. McMillan et al., 2005). The 

 

1. Introduction 

The burning of petroleum fuel, coal gas, and natural gas streams is the 

major source of CO2 emission. CO2 gas decreases the natural gas efficiency 
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greenhouse effect also occurs due to the presence of water vapour and CO2 in natural gas. The concentration 

of water vapor does not rely directly on human activity but temperature and other factors effects human health 

(Blasing, T.J et al., 2009) (Hongqun Yang et al., 2008) (Paola Bernardo et al. 2013). CO2 is the main source 

of the greenhouse effect, representing 77% of the human greenhouse effect contribution in the last twenty 

years (26 to 30% of all CO2 emissions). The burning of fossil fuels produced the main anthropogenic carbon 

dioxide emissions. Fuel such as coal (12–15 mol-% CO2) and natural gas rely on the level of CO2 in flue gases 

(1-2 mol- % CO2). Therefore, it is timely need to separate CO2 from CH4. In petroleum industries, the 

greenhouse impact has been significantly improved by the separation of CO2 from exhaust gases (Paola 

Bernardo et al., 2013) (Chaffee, A.L et al., 2007). Many ways have been used before CO2 is compressed and 

delivered in gas streams for the mitigation of these challenges. On the other hand, CO2 can be utilized as an e-

oil recovery agent, which can be injected into the reservoir to enhance reservoir productivity (C. A. McMillan 

et al. 2005) (Farrar, C et al., 1999) (Yoro, K et al., 2016). Natural gas is also known as methane (CH4). 

Studies have been done in recent years to look for effective gas separation membrane structures, membrane 

casting methods, and the membrane module. It was also noticed that with the passage of time, the efficiency 

of the membrane reduced owing to the plasticization problem but still there are many ways to improve it 

which are also briefly discussed in CA membrane section. Membrane can be affirmed as a very aggressive 

CO2 extraction technology from CH4 (Chaffee, A.L et al., 2007) (Songolzadeh M et al., 2014). 

 
Table 1: The main greenhouse gases and their concentration [10, 11]. 

 

Compound 

Preindustrial 

concentration 

(ppmv) 

Atmospheric 

lifetime (years) 

Main human activity 

source 

GWP 

Water Vapor 0.5 1960-200 Petroleum and natural 

Gas 

-10-3 5×10
-4

 

Carbon dioxide (CO2) 280 ∼100 Renewables, concrete 

production, and land 

utilization. 

1 

Methane (CH4)  

 

0.715 12 Petroleum energy, 

fields of rice, dumping 

trash and cattle  

25 

Hydrogen Sulfide (H2S) 20-40 Few hours Petroleum, natural gas, 

pulp and paper 

manufacturing  

16300 

Perfluoromethane (CF4)  

 

0.00007 49,000 While production of 

Aluminum  

7000 

Perfluoroethane (C2F6) 0 0.000005 9,500 Production of 

aluminum.  

10000 

 

Sulfur hexafluoride (SF6) 0 0.00000918 3,600 Dielectric fluid 23,300 
 

 

Whenever fuel is burnt, the amount of CO2 generated is based on the percentage of carbon available in 

the fuel. The heat content or the energy produced in the combustion of a fuel is governed mostly by the fuel's 

carbon and hydrogen content  (Dantas T.L.P et al., 2011) (Tsotsis et al., 2002). While burning, heats are 

created by combining carbon and hydrogen with oxygen (Budd P et al., 2005). CH4 is more energy-efficient 

compared to other fuels and hence has a comparatively lower CO2-to-energy proportion. The heat value of 
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water and other components such as sulfur and non-combustible impurities in certain fuel reduces and the 

CO2 concentration increases. The energy they generate when combusted from differing fuels emits varying 

amounts of carbon dioxide (CO2). Compare the quantity of CO2 emitted for each unit of energy or heat 

contents to evaluate releases across fuels  (Mohammadi A et al., 2013) (Worrell E et al., 2001).  

 

Table 2: Pounds of CO2 emitted per million British thermal units (Btu) of energy for various fuels 

Fuels CO2 released/Btu 

Natural gas (CH4)  132.0 

Propane (C3H8) 155.0 

Petroleum  165.7 

Crude oil and petroleum diesel   173.9 

Subbituminous (Coal)  218.0 

Anthracite (Coal)  229.1 

Bituminous (Coal)  207.0 

lignite (Coal)  216.5 

 

Worldwide CO2 emission from energy consumption has been steadily increased between 1751 and 

2020. Figure 1 illustrates that the greatest proportion of CO2 emissions in power generation plants (55% of 

world Emissions of CO2), transport (23%), and industries (19%). The two largest CO2 emission sectors 

include exhaust gasses and petroleum refineries (petrochemical) while the cement industry provides around 

5% to global anthropical CO2 emissions. Petrochemical industrials also account for a substantial part of CO2 

emissions, for example, the emission of around 21 tonnes/year from the petrochemical industry in Iran and 

Pakistan alone  (Yang, Z.X et al., 2008) (Kim, Y et al., 2005). 

 
Figure 1: Global CO2 grown emissions from fossil fuel combustion emitted in the over years  

 

According to the IGPCC (Inter governmental Panel on Climate Change), the air may cover up to 583 

ppmv CO2 by 2021, bringing a 1.9°C rise in mean global temperatures and 38m rising sea level accordingly 

(Kim, Y et al., 2005). Considering that the earth's average temperature is continuing to increase, the IGPCC 

has declared that worldwide GHG emissions must be reduced by 50% to 80% by 2050 to prevent catastrophic 

global warming effects (Lin, H et al.,). The most promising technique for reducing CO2 emissions from fossil 
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fuel sources to the environment is carbon capture and storing (CCS) via a membrane. CO2 extracted from flue 

gases may also be utilized in enhanced oil recovery (EOR) activities, which include injecting CO2 into 

petroleum reservoirs to improve oil mobility and reservoir recovery  (Cecopierigomez, M et al., 2007) 

(Christodoulou A et al., 2018). 

This case study provides a brief overview of the membrane technology, followed by updates on 

membrane technology and advancements in membrane design for CO2 extraction from exhaust gases. This 

study concentrates mainly on the ideas to modify membrane for their efficiency, such as assisted cellulose 

acetate membrane and mixed polymer membranes, which produce better separations than basic polymeric 

membranes. In this study, other separation strategies are also explored and compared (Pires, J et al., 2011) (J. 

G. J. Olivier et al., 2014). 

 

Separation Techniques for CO2 Removal  

 
Table 3: Comparison between CO2 separation techniques 

Separation Techniques Comparison 

 

 

Membrane 

The absorption of CO2 across the membrane is increased. Changes in a 

polymeric material can enhance solubility, and raising free space volume 

can promote CO2 diffusion. The addition of bulk substitute groups, 

improved membrane casting techniques, and annealing conditions may 

enhance the free volume (J. G. J. Olivier et al., 2014).  

 

Sorbents Sorbents fit well for low-to-medium feed contents of the desired 

component (J. G. J. Olivier et al., 2014).  

 

Solvents 

CO2 selectable solvents were studied for use as components in fluid 

separations as solvent extraction, mainly neutral solvents that switch from 

CO2 to ionic species (Howard Herzog et al., 2009). 

 

Cryogenics 

The cryogenic approach cannot be utilized for the extraction of CO2 from 

streams such as gas from coal-fired or natural gas plants, because of the 

comparatively tiny amounts of CO2 in these sources, And the energy 

necessary to transmit the stream to zero cryogenic application temperatures 

would be uneconomical for the whole process (Knapik, R.C et al., 2019).  

 

Adsorption for large-scale removal of CO2 from the exhaust gas is not currently considered to be 

attractive due to its small capacity and CO2 selectivity. The Figure 1 also compares the different separation 

technologies with those already in operation worldwide and observed from literature and research that 

recently membrane technology is extensively active in the removal of CO2-based natural gas (Loeb S et al., 

1962) (Kosinov, N et al., 2016).  
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Figure 2: Overview chart of comparison separations techniques with membrane separation 

 

 Various other techniques for CO2 gas separation also have been used in previous studies other than 

Membrane (cellulose acetate membrane) such as absorption process, adsorption process, and cryogenic 

process, but these techniques are failed to purify gas or capture CO2 in good quality and good quantity due to 

their drawbacks (Gnanasekaran, D at al., 2012). The solvents in these processes’ results corrosion as well as 

erosion since the technology for large-scale removal of CO2 from flue gas is not yet deemed desirable. 

Further, existing adsorbents have limited capacity and CO2 selectivity. The table below clearly highlights the 

drawbacks of the separation techniques other than the membrane approach (Ghalei, B et al., 2007) (C. Joly et 

al., 1997).  

Table 4: Drawbacks of processes other than Membrane technique 

 

 

 

 

 

 

2. Membrane Technology 

The membrane technology is relatively new approaches compared to other separation approaches 

which were started four decades ago. The earliest case studies on membranes and osmosis retrieve the central 

phase of the 18th century when Nollet found that a pig's vesicle transmits ethanol in contact with a 

combination of water-ethanol on one side as well pure water on the other. The relationship among both 

osmotic and a cellulose acetate membrane was believed to be known initially to Nollet (Yong, W.F et al., 

2021) (Rhim H rt al., 1975). The permeation is the sum of the diffusion factor and the sorbent factor. A 

45% 

25% 

20% 

10% 

Currently used processes for CO2 Separation  

Membrane Sorbent Solvent Cryogenics

Process Drawback 

Absorption process Absorption causes environmental hazards 

Adsorption process Less cost-effectiveness, Loading capacity decreases 

with increasing temperature. 

Cryogenic process Using this method reduces overall plant efficiency and 

increases the probability of unit operations obstruction.  
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kinetic description that reflects the ambient circumstances of the permeable molecules is the diffusion 

parameter. The coefficient of sorption relates the concentration of components in the fluid phase to the 

polymer phase. The solubility of gases in the polymeric cellulose acetate (CA) membrane phase may be 

identified with thermodynamics. The diffusion coefficient is usually affected more than the sorption 

coefficient by changes in membrane material, as in equation (1) (Lee KH et al., 1986) (Clarizia, P.B et al., 

2013).  

 

 
 

 

(   )
                             ( ) 

As in the previous discussion, it was said that Graham with Loeb, and sourirajan created the concept 

of membrane separation in 1866 by presenting an anisotropic membrane that further reinforces this field. 

Throughout the 1980s and 1990s Separex, Gneron, and Cynara contributed much to the technical and 

commercial purification of gas (Knapik, R.C et al., 2019) (Tong, Z et al., 2021). These advancements make 

membrane gas separation a competitive instrument in the industrial sector. This technique is now commonly 

utilized in the natural gas pulverizing industries to eliminate CO2 (Btddeker, K.W et al., 1995). 

This method relies on separation methods, including separation with diffusion and molecular sieving 

(Farrar, C et al., 1999).  Removal of CO2 in the membrane happens when the radius of a pore is shorter than 

the mean free route of gas molecules; molecules collide with pore walls more than with each other, then 

accumulate and reflect in a random direction. Different median free pathways of gas molecules, which depend 

on their molecular weight. The contact of gas molecules that are deposited with the pores relies on surface 

diffusion (Tong, Z et al., 2021) (Xu, J et al., 2018).  

 

Figure 3: Schematic design for the removal of CO2 with different steps in the cycle 

 

The membrane CO2 removal unit had several clear regeneration approaches and increased temperature 

while maintaining almost constant pressure and heating of the solid via the Joule action and this shows that 

CA membrane is usually dense (Baker, J.G et al., 1995) (Junaidi, M.U.M at al., 2013). CO2 emissions by 

natural gas are ~25.7% less than oil and coal. Natural gas has an excellent fossil fuel background. It emits 
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significantly less greenhouse emission than petroleum or coal while using this fossil fuel. However, we can't 

argue that it's environmentally friendly (Fick, A et al., 1995) (Yave, W et al., 2010) (Le Blanc et al., 2009). In 

natural gas there are the lowest carbon dioxide emissions, thus it is better to use the CA membrane to retrieve 

the rest of the CO2 from that lowest carrier efficiently (Allen, J.G et al., 2016). 

 
Figure 4: CO2 content kg/kWh in Natural gas and other materials before separation process through the 

membrane 

Cellulose Acetate (CA) Membrane  
 

CA membrane was initially developed for reverse osmosis but is currently the most robust carbon 

rinse membrane available. Due to the glassy structure in CA membrane, this membrane is more efficient than 

polysulfone membrane (PSF) because in CA plasticization property is less than PSF (Jiang, L et al., 2006). 

Furthermore, For CO2 separation, cellulose acetate and its derivatives are employed. The membranes are 

formed by a thin selective skin layer with a less selective porous base. The porous substrate provides 

mechanical strength under high pressure (Xiaobo Dong et al., 2021) (Bake, R.W et al., 2002). This membrane 

type is known as a polymeric membrane. In CA membrane, the flow of CO2 reduction is higher as compared 

to other asymmetric membranes but in time owing to plasticization effects less than other membranes. CO2 

separation polymeric membranes (CA) with high performance may be produced by maintaining higher 

solubility in the membrane and improving CO2 diffusion across the membrane (Scholz, M et al., 2011) 

(Linfeng Leia et al., 2020). Modifications in polymer composition can enhance solubility, and expanding free 

space volume which can promote CO2 diffusion. Inserting bulk substitution groups, improving membrane 

casting processes, and annealing conditions can help to enhance free volume (Quesada Cabrera et al., 2011) 

(Sazali, N et al., 2020). 

Polyaniline, polypyrrole, and polyacrylates are examples of patented polymeric membranes as 

reported in previous studies. PSF is a chemically and thermally stable polymeric with good selectivity and 

permeability for gas separation but PSF has more plasticization than CA membrane (Isanejad, M et al., 2017) 

(Pak, S.H et al., 2016). The new applications focus more on CA polymeric membranes, this membrane is 

made up of a hard-glassy component and a soft rubbery segment. The structural core is made up of hard 

polymeric segments, while the soft or rubbery segments form a thin layer on the hard support. Due to the 
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thick skin layer and porosity, the resulting membranes exhibit excellent selectivity and permeability (Xi, Y.H 

et al., 2018) (Mubashir, M et al., 2018). 

 
Figure 5: Spiral Wound Membrane Element CO2 Removal Gas (Hamidreza Sanaeepur et al., 2019). 

 

Two flat sheets with a dissolved or permeated spacer between arcs bonded together with three of their 

faces in a packing cabinet are within the circular pattern element. Feeding removes several of these packages, 

which are then coiled around a permeate pipe with their open ends facing the permeate tube (Ishigami, T et 

al., 2012). Feed Gas passes together with the membrane side through the separators. When the gas travels 

between the wrappers, the carbon dioxide, hydrogen sulphides, and other extremely porous materials are 

dissolving or penetrating the collector. There is just one exit for these dissolved or entered components, which 

means that component must be dissolved or permeated into that exit section (Jamil, A et al., 2018) (Wakui, 

T.A et al., 2020). The permeated gas passes into the pipeline through pores from which it travels and flows 

down and this continues as recycled process. Very thin hollow fibers are wrapped around a central pipe in a 

large design in hollow-fiber components. In this design, the two free ends of fiber eventually disintegrate on 

the side of the element (Salvatore F et al., 2021) (Stepan D. Bazhenov et al., 2018). Circular wounds in the 

membrane separation section can handle greater and less sensitive pressures and have a lengthy emphasizing 

the service in sweetening of natural gas. Elements with hollow fibers cannot tolerate greater, usually lesser 

pressures, but they can be modified with increasing solubility of a polymeric section of the membrane 

(Ahmed W. Ameen et al., 2020) (Can Zeng Liang et al., 2021). 

 CA is a natural plastic, which is produced from de-contaminated natural cellulose. Natural cellulose 

of the proper properties is formed initially from two sources, wood pulp, and cotton linters. In the production 

process, CA is produced by reacting natural cellulose with acetic anhydride, which occurs in flake (Hölter, J 

et al., 2011) (Meier, J et al., 2021) That flake is then converted into fine powder by grinding. CA in primary 

form cannot be treated as a thermoplastic. It can only be treated by liquefaction in a solvent and spinning. 

However, it can be treated by plastic treating techniques in compounded form. For CA granules or plastid, CA 
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has to be homogenized with a desirable combination of additives and plasticizer in order to melt or 

compounded to achieve granules (Juergen Puls et al., 2011) (Shuangping Xu et al., 2021). 

 

3. Possible Research  

 

1. There are many proposals for CO2 separation, however, none have yet emerged as a clear energy 

efficiency champion. One approach is CO2removal selectively from conventional flue gas or separating O2 

from the air before burning might be beneficial, this would decrease the difficulties associated with separating 

CO2 from the resultant effluent. There are variations on these subjects and more exotic options are offered. 

All of these CO2 removal systems need gas separation techniques. Solvent methods, chemical adsorbents, and 

membrane separations are currently utilized to separate gases for CO2 extraction. To maintain the solvent or 

drive efficient separation for CO2 removal, all existing methods need a considerable amount of energy. 

Solubility research has revealed that the lowest energy necessary to carry out in any of these operations is 

considerably less than that utilized by today's membrane technology alone. If energy sources are to be part of 

a low-carbon dioxide system with minimal greenhouse gas emissions, research on effective, low-cost CO2 

capture technology will be necessary, and will be beneficial throughout transitions to alternative energy 

sources.  

2. The impacts of plasticization can interfere with the generation of CO2 removal. CO2 capture 

polymeric (CA) membranes with high performance may be accomplished by increasing CO2 solubility in the 

membrane and increasing CO2 flow across the membrane. Changes in the chemistry of polymers and 

increased free space volume can enhance the solubility of CA membrane materials; casting and rinsing 

techniques can further enhance CO2 and bulk material diffusion over the membrane region. 

 

4. Conclusion 

 

 Recently, membrane-based gas separations are well stabilized and contend with cryogenic 

distillation, absorption, and pressure swing adsorption in chemical processing amenities. Based on overall 

economies, safety, environmental and technical considerations, membranes stay competitive as an alternative 

separation method. The main focus of research and development should be carried out on producing ideal CA 

membranes to fulfill the major reliability and durability standards for commercial processes. CA plastid is a 

high-performance polymer that combines novel manufacturing ideas with new membrane applications. From 

case study, it is found that CA membrane hasthe efficiency to reduce CO2 from CH4<2% CO2, <4ppm H2S 

and <0.1g/m3 H2O and due to glassy structure, CA membrane has high transparency, high mechanical 

strength and best resistance. 
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